Back

 Industry News Details

 
Unpacking the “black box” to build better AI models Posted on : Jan 26 - 2023

When deep learning models are deployed in the real world, perhaps to detect financial fraud from credit card activity or identify cancer in medical images, they are often able to outperform humans.

But what exactly are these deep learning models learning? Does a model trained to spot skin cancer in clinical images, for example, actually learn the colors and textures of cancerous tissue, or is it flagging some other features or patterns?

These powerful machine-learning models are typically based on artificial neural networks that can have millions of nodes that process data to make predictions. Due to their complexity, researchers often call these models “black boxes” because even the scientists who build them don’t understand everything that is going on under the hood.

Stefanie Jegelka isn’t satisfied with that “black box” explanation. A newly tenured associate professor in the MIT Department of Electrical Engineering and Computer Science, Jegelka is digging deep into deep learning to understand what these models can learn and how they behave, and how to build certain prior information into these models.

“At the end of the day, what a deep-learning model will learn depends on so many factors. But building an understanding that is relevant in practice will help us design better models, and also help us understand what is going on inside them so we know when we can deploy a model and when we can’t. That is critically important,” says Jegelka, who is also a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Institute for Data, Systems, and Society (IDSS).

Jegelka is particularly interested in optimizing machine-learning models when input data are in the form of graphs. Graph data pose specific challenges: For instance, information in the data consists of both information about individual nodes and edges, as well as the structure — what is connected to what. In addition, graphs have mathematical symmetries that need to be respected by the machine-learning model so that, for instance, the same graph always leads to the same prediction. Building such symmetries into a machine-learning model is usually not easy.

Take molecules, for instance. Molecules can be represented as graphs, with vertices that correspond to atoms and edges that correspond to chemical bonds between them. View more