Industry News Details

A far-sighted approach to machine learning Posted on : Nov 23 - 2022

New system can teach a group of cooperative or competitive AI agents to find an optimal long-term solution.

Picture two teams squaring off on a football field. The players can cooperate to achieve an objective, and compete against other players with conflicting interests. That’s how the game works.

Creating artificial intelligence agents that can learn to compete and cooperate as effectively as humans remains a thorny problem. A key challenge is enabling AI agents to anticipate future behaviors of other agents when they are all learning simultaneously.

Because of the complexity of this problem, current approaches tend to be myopic; the agents can only guess the next few moves of their teammates or competitors, which leads to poor performance in the long run.

Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a new approach that gives AI agents a farsighted perspective. Their machine-learning framework enables cooperative or competitive AI agents to consider what other agents will do as time approaches infinity, not just over a few next steps. The agents then adapt their behaviors accordingly to influence other agents’ future behaviors and arrive at an optimal, long-term solution. View More