Industry News Details

Technique protects privacy when making online recommendations Posted on : May 12 - 2022

Algorithms recommend products while we shop online or suggest songs we might like as we listen to music on streaming apps.

These algorithms work by using personal information like our past purchases and browsing history to generate tailored recommendations. The sensitive nature of such data makes preserving privacy extremely important, but existing methods for solving this problem rely on heavy cryptographic tools requiring enormous amounts of computation and bandwidth.

MIT researchers may have a better solution. They developed a privacy-preserving protocol that is so efficient it can run on a smartphone over a very slow network. Their technique safeguards personal data while ensuring recommendation results are accurate.

In addition to user privacy, their protocol minimizes the unauthorized transfer of information from the database, known as leakage, even if a malicious agent tries to trick a database into revealing secret information.

The new protocol could be especially useful in situations where data leaks could violate user privacy laws, like when a health care provider uses a patient’s medical history to search a database for other patients who had similar symptoms or when a company serves targeted advertisements to users under European privacy regulations.

“This is a really hard problem. We relied on a whole string of cryptographic and algorithmic tricks to arrive at our protocol,” says Sacha Servan-Schreiber, a graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and lead author of the paper that presents this new protocol.

Servan-Schreiber wrote the paper with fellow CSAIL graduate student Simon Langowski and their advisor and senior author Srinivas Devadas, the Edwin Sibley Webster Professor of Electrical Engineering. The research will be presented at the IEEE Symposium on Security and Privacy.

The data next door

The technique at the heart of algorithmic recommendation engines is known as a nearest neighbor search, which involves finding the data point in a database that is closest to a query point. Data points that are mapped nearby share similar attributes and are called neighbors.

These searches involve a server that is linked with an online database which contains concise representations of data point attributes. In the case of a music streaming service, those attributes, known as feature vectors, could be the genre or popularity of different songs.

To find a song recommendation, the client (user) sends a query to the server that contains a certain feature vector, like a genre of music the user likes or a compressed history of their listening habits. The server then provides the ID of a feature vector in the database that is closest to the client’s query, without revealing the actual vector. In the case of music streaming, that ID would likely be a song title. The client learns the recommended song title without learning the feature vector associated with it. View more