Industry News Details

IBM’s Watson Studio AutoAI automates enterprise AI model development Posted on : Jun 12 - 2019

Deploying AI-imbued apps and services isn’t as challenging as it used to be, thanks to offerings like IBM’s Watson Studio (previously Data Science Experience). Watson Studio, which debuted in 2017 after a 12-month beta period, provides an environment and tools that help to analyze, visualize, cleanse, and shape data; to ingest streaming data; and to train and optimize machine learning models in real time. And today, it’s becoming even more capable with the launch of AutoAI, a set of features designed to automate tasks associated with orchestrating AI in enterprise environments.

“IBM has been working closely with clients as they chart their paths to AI, and one of the first challenges many face is data prep — a foundational step in AI,” said general manager of IBM Data and AI Rob Thomas in a statement. “We have seen that complexity of data infrastructures can be daunting to the most sophisticated companies, but it can be overwhelming for those with little to no technical resources. The automation capabilities we’re putting Watson Studio are designed to smooth the process and help clients start building machine learning models and experiments faster.”

AutoAI, which is also available in IBM Cloud, automates data prep and preprocessing steps including feature engineering, or the process of using domain knowledge of data to create elements core to AI algorithms. It handles hyperparameter optimization (i.e., choosing a set of optimal hyperparameters for a learning algorithm, where “hyperparameter” refers to the value set before the learning process begins), and it boasts a growing suite of powerful pretrained model types such as gradient boosted trees. View More