Back

 Industry News Details

 
How Big Data Is Changing Science Posted on : Oct 05 - 2018

“This is when I start feeling my age,” says Anne Corcoran. She’s a scientist at the Babraham Institute, a human biology research centre in Cambridge, UK. Corcoran leads a group that looks at how our genomes – the DNA coiled in almost every cell in our bodies – relate to our immune systems, and specifically to the antibodies we make to defend against infection.

She is, in her own words, an “old-school biologist”, brought up on the skills of pipettes and Petri dishes and protective goggles, the science of experiments with glassware on benches – what’s known as “wet lab” work. “I knew what a gene looked like on a gel,” she says, thinking back to her early career.

 These days that skill set is not enough. “When I started hiring PhD students 15 years ago, they were entirely wet lab,” Corcoran says. “Now when we recruit them, the first thing we look for is if they can cope with complex bioinformatic analysis.” To be a biologist, nowadays, you need to be a statistician, or even a programmer. You need to be able to work with algorithms.

An algorithm, essentially, is a set of instructions – a series of predefined steps. A recipe could be seen as an algorithm, although a more obvious example is a computer program. You take your input (ingredients, numbers, or anything), run it through the algorithm’s steps – which could be as simple as “add one to each number”, or as complex as Google’s search algorithm – and it provides an output: a cake, search results, or perhaps an Excel spreadsheet.

Researchers like Corcoran need to use algorithms because, in the 17 years since she became a group leader, biology has changed. And the thing that has changed it is the vast – the overwhelmingly, dizzyingly vast – flood of data generated by new biomedical techniques, especially next-generation sequencing.

Not long ago, sequencing an entire genome – determining the order of all 3 billion pairs of DNA letters in the helix – took years. The Human Genome Project, the first completed sequence of an entire human genome, took around 13 years from conception to its completion in 2003, and cost more than £2 billion. Today, next-generation sequencing can do the same thing in 24 hours for not much more than a thousand pounds.

This has completely changed how scientists work. It’s not just that they get their hands dirty less often, nor simply that the required skills have changed. It’s that the whole process of science – how you come by an idea and test it – has been upended.

This has left a lot of senior scientists needing to understand and supervise techniques that didn’t exist when they trained. It’s left universities playing catch-up, with many degrees not teaching the skills that modern biologists need. But above all, it’s led to ground-breaking scientific discoveries – breakthroughs that simply wouldn’t have been possible 20 or even 10 years ago.

A 10-minute drive from Babraham, in a village called Hinxton, there’s another major life-sciences centre, the Wellcome Sanger Institute. It’s 25 years old this week, and the rapidly moving history of genomics is written in its very architecture. View More