Back Industry News

What is Apache Spark? The big data analytics platform explained Posted on Nov 13 - 2017

Share This :

Fast, flexible, and developer-friendly, Apache Spark is the leading platform for large-scale SQL, batch processing, stream processing, and machine learning

From its humble beginnings in the AMPLab at U.C. Berkeley in 2009, Apache Spark has become one of the key big data distributed processing frameworks in the world. Spark can be deployed in a variety of ways, provides native bindings for the Java, Scala, Python, and R programming languages, and supports SQL, streaming data, machine learning, and graph processing. You’ll find it used by banks, telecommunications companies, games companies, governments, and all of the major tech giants such as Apple, Facebook, IBM, and Microsoft.

Out of the box, Spark can run in a standalone cluster mode that simply requires the Apache Spark framework and a JVM on each machine in your cluster. However, it’s more likely you’ll want to take advantage of a resource or cluster management system to take care of allocating workers on demand for you. In the enterprise, this will normally mean running on Hadoop YARN (this is how the Cloudera and Hortonworks distributions run Spark jobs), but Apache Spark can also run on Apache Mesos, while work is progressing on adding native support for Kubernetes.

If you’re after a managed solution, then Apache Spark can be found as part of Amazon EMR, Google Cloud Dataproc, and Microsoft Azure HDInsight. Databricks, the company that employs the founders of Apache Spark, also offers the Databricks Unified Analytics Platform, which is a comprehensive managed service that offers Apache Spark clusters, streaming support, integrated web-based notebook development, and optimized cloud I/O performance over a standard Apache Spark distribution.

Spark vs. Hadoop

It’s worth pointing out that Apache Spark vs. Apache Hadoop is a bit of a misnomer. You’ll find Spark included in most Hadoop distributions these days. But due to two big advantages, Spark has become the framework of choice when processing big data, overtaking the old MapReduce paradigm that brought Hadoop to prominence. View More


Get the Global Big Data Conference

Weekly insight from industry insiders.
Plus exclusive content and offers.